
1

Aspect-Oriented Engines for Kroki Models

Execution
Milorad Filipović, Sebastijan Kaplar, Renata Vaderna, Željko Ivković, Gordana Milosavljević, Igor

Dejanović

Faculty of Technical Sciences, Novi Sad, Serbia

{mfili, skaplar, vrenata, zeljkoi, grist, igord}@uns.ac.rs

Abstract – The paper presents an overview of techniques

and mechanisms implemented in generic web and

desktop engines that enable execution of application

prototypes being specified by our Kroki tool. Unlike

most other solutions where only a user interface skeleton

is executable, Kroki’s specifications can be tested

through all three application tiers – the user interface,

the business logic, and the database. Kroki is a mockup-

driven tool that enables development of enterprise

information systems based on participatory design. Since

immediate execution is always possible, it can

significantly contribute to decreasing a communication

gap between the development team and users.

I. INTRODUCTION

Kroki [1, 17, 18] is a rapid prototyping tool that

enables users and developers to be concurrently

engaged in the development of enterprise information

systems. Kroki enables requirements elicitation based

on executable prototypes, using the terms that are

familiar to the end users - by enabling them to draw

the user interface (UI) mockups. Contrary to the

approaches where mockups are created by general-

purpose drawing tools and then manually or semi-

automatically transformed to formal models (which

are prone to errors and can lead to information loss),

mockups created by Kroki are already elements of the

UI model. Kroki’s mockup editor actually implements

a concrete syntax of our EUIS (Enterprise User

Interface Specification) DSL [13] for specifying UIs

of enterprise applications at a high-level of abstraction.

EUIS DSL also has a textual syntax implemented by

Kroki’s command window and a UML-like concrete

syntax implemented by Kroki’s UML lightweight

editor (Figure 5) [18]. EUIS DSL supports

specification of several types of forms and panels and

their elements, where the corresponding layout and

functionality are defined by our user interface

guidelines.

In order to reduce waste of time and effort, a special

attention is paid to the option of reusing artifacts

across development phases. The reuse is supported by

exporting class diagrams and application prototypes to

general purpose modeling and programming tools, and

by importing models from general-purpose modeling

tools (Figure 1). Thus, a created prototype can be used

for requirements elicitation and can also evolve to the

final enterprise application using the preferred

toolchain (currently supported target language is Java).

Kroki enables hands-on prototype evaluation based

on executable engines that can be activated almost

instantaneously at any given moment during the

development phase. This helps narrow the gap

between the user specification and the finished

product by iterative and online evaluation based on a

real working system. According to the principles of

Figure 1. Kroki tool architecture

2

agile development, information gathering is most

effective if it is based on something that works. Unlike

most other solutions where only the UI skeleton is

executable, Kroki’s executable mockups can be tested

through all three application tiers – the user interface,

the business logic, and the database.

Generic enterprise engines can adapt their

functionalities to each specified prototype on the fly.

The basis of this adaptable behavior is the

configuration data stored in the application repository

(Figure 2) [14]. The application repository is a file

directory that contains configuration files that provide

information about the developed prototype that the

generic engines need in order to obtain functions and

look defined in Kroki editors. When the user chooses

to execute the specified prototype, Kroki generates an

application repository specific to the prototype and

runs desired (web or desktop) generic enterprise

application.

Figure 1 shows the architecture of the Kroki tool.

As can be seen, two main parts of the architecture are

the Prototype specification and the Prototype

execution modules. The paper gives an overview of

the prototype executions modules, primarily focusing

on the web AOP engine and the application

repository. More details about Kroki architecture can

be found in [1].

The paper is structured as follows. Section 2

reviews the related work. Section 3 provides a detailed

overview of Kroki's application repository with its

static and generated parts. Basic mechanisms and

principles of generic web engine used for prototype

execution are given in Section 4. Section 5 provides

additional options for extending built-in engine

functionalities. Section 6 gives some final thoughts on

the subject of the paper.

II. RELATED WORK

This review of the related work deals primarily with

the problems of mockup-driven development and

applying aspect-oriented programming in web

development.

The generic nature of the developed engine along

with its need for adaptiveness leads to a lot of design

challenges that make the standard object-oriented and

model-driven approaches insufficient and error prone

[3]. The shortcomings of traditional approaches are

especially emphasized in the design of modern

enterprise web applications which are expected to

provide a rich user interface and high performance by

default [3, 5]. In order to challenge those problems,

aspect-oriented programming methods are

incorporated into web application development more

often than before [4, 5].

The benefits of AOP approach can be seen in [3]

and [4], where the greater attention has been dedicated

to design techniques of adaptive, context-aware web

applications and the performance of the final product.

Our approach, which is presented in this paper,

follows these basic principles, but presents AOP web

engine as a basis for model execution.

The main motivation for developing a generic web

engine (in contrast to the standard methods which rely

on code generators) was to increase interest in

Figure 2. Application repository structure

3

adoption of agile development methods in web design

as presented in [4, 5]. One of the most comprehensive

solutions in the field of prototype-driven development

is Umple tool, most notably its UIGU generation

extension [7]. A slightly different approach is

presented in [8] which presents window/event

diagrams (WED) as reusable specification artifacts.

WEDs combine UI mockups and state diagrams that

enrich the UI specification with a prototype which has

some basic functionalities. A large body of research

deals with digitalization of hand-drawn UI mockups

using shape recognition algorithms [8, 9, 10, 11, 12].

Unlike some of the solutions presented here where

only the user interface skeleton is executable, Kroki’s

executable mockups can be tested through all three

application tiers.

III. APPLICATION REPOSITORY

The application repository stores configuration data

which is the basis for adaptive behavior of Kroki’s

generic engines. These data specify various parts of

the enterprise system and their relations, look-and-feel

resources (graphic icons, CSS, and HTML templates

etc.), and other configuration artifacts needed for

configuration of all generic engine layers.

The application repository structure is shown in

Figure 2. It is composed of static and generated parts.

A static part of the repository contains general data

that is independent of the concrete specification and as

such is always the same (configuration files needed

for engine core functionalities, look-and-feel artifacts

for web and desktop engines, etc.). Main directories in

this part of the repository are:

 props - Contains properties files with settings

and string resources for web and desktop

applications.

 model - Contains XML specifications of static

parts of the engines. These static specifications

mainly deal with the process of mapping

programming language types to concrete GUI

components

 gui - Contains look-and-feel resources for both

web and desktop generic applications.

A generated part of the repository is created by

Kroki generators and contains data about currently

specified application prototype. Although the engine

could take this data directly from Kroki model, we

choose XML files as an intermediate step in order to

provide independent functioning of the specified

applications (after deployment). It’s structure

resembles the structure of the static part. The main

difference is the lack of gui subdirectory which is due

to enterprise systems using the same UI guidelines

used as a basis for EUIS DSL specification [13]. Apart

from the configuration files, the concrete EJB classes

are being generated directly to the engine source code

directory. Hence, they are not part of the application

repository.

Main subdirectories of this part of application

repository are:

 props - provides additional information that

supplements the static properties with the data

specific to the current specification (such as

application name and description).

 db_config - contains the hibernate.cfg.ml file

used by generic engines to configure the

database connection used in the prototype

execution phase. During the specification, each

engine can be configured to use an existing

database or to run embedded test database.

 model - contains XML descriptions of

enterprise application elements organized in the

following files and subdirectories:

o ejb - contains XML specifications of

EJB entities used in Kroki project.

One XML file is generated for each

EJB entity.

o panel - contains XML definitions of

standardized panels specified in Kroki

project and mapping information (with

which EJB entities the panel is

associated with)

o enumerations-generated.xml - XML

specification of enumerations

specified in the Kroki tool.

o menu.xml - XML specification of the

application's main menu. The structure

of this menu reflects the structure of

the packages and forms contained by

the Kroki project, but can be

overridden by Kroki’s administration

subsystem. Every user group can

have their own main menu.

o xml-mapping.xml - specifies which

EJB class is associated with which

XML description file in ejb

subdirectory.

 users - contains XML description files for user

rights administration module.

IV. GENERIC WEB ENGINE

Kroki web engine is a generic web application

developed in Java that adapts its look and behavior

according to the configuration data stored in the

application repository. This section presents its

architecture in order to provide detailed insight into

the engine's inner mechanisms.

Figure 3 shows conceptual architecture of the web

engine. Upper half of the figure shows basic modules

for initial data collection which are used by both the

desktop and web engine. Lower part (with a blue

background) displays web-specific architecture. As

can be seen, the two parts are loosely coupled, so just

the presentation layer is technology dependent. This

section will cover some of the basic mechanism for

obtaining executable prototype from Kroki

4

specification with the focus on the web engine. This

presented explanation features as less as possible web-

specific details, so it can be used to comprehend also

Kroki's generic desktop engine since it lies on the

same foundations.

The main components of the engine are shown in

the core package in Figure 3. Application module

represents the main application class while all of the

application's data is stored and managed by the Cache

class. Upon startup, application loads the mapping

data and project properties from the application

repository using the corresponding readers from the

xml_readers package. This reduces performance drops

when executing large projects since only the mapping

data is loaded into an application cache while the

actual model data is loaded on demand. Each reader

module reads the data from the corresponding

configuration file stored in the application repository

and stores it in the application cache. Once all the

necessary data has been obtained, engine is ready to

run.

Basic use scenario in enterprise system revolves

around users manipulating data from the database via

standard forms. Standard forms contain (one or more)

standard panels with well-defined look and features

(see [13] for details). The resources package contains

the modules responsible for obtaining data for a

specific standard form and presenting it to the user.

Since our web engine is based on the Restlet web

engine, all modules represent Restlet's resource

classes. HomeResource handles the login requests and

is equivalent to the main form with the main menu in

the desktop enterprise applications. It shows a page

with a main menu from which the user can activate

desired form associated with a specific enterprise

entity.

These user actions are handled by the

ViewResource module. It obtains corresponding panel

data from the application repository via the

PanelReader component. The panel specification

contains only the representational aspect of one panel

(layout specification and default panel controls), so in

order for the given form to be functional, additional

persistent data needs to be acquired. Each panel is

associated with one EntityBean instance that it obtains

via the EntityReader module. Combining the

EntityBean and Panel data, the ViewResource displays

the web form that conforms to the desired

specification. The data that needs to be represented is

wrapped into HTML elements using the Freemarker

templates.

The basic steps in this process are illustrated in

Figure 4. The corresponding Restlet resources handle

other enterprise operations. For the sake of simplicity,

Figure 3 only shows the basic CRUD (create, update,

delete) resources. These modules don't have the

explicit HTML representation, they just inform the

user of the operation result via the simple text sent

over an AJAX call.

Figure 3. Generic WEB engine architecture

5

Figure 4. WEB engine overview

V. EXTENDING GENERIC ENGINE

Kroki engines offer standard enterprise

functionalities over arbitrary data sets, so its main

concern is to process and present data from the

database in the predefined way. As a result of the fact

that enterprise systems vary in their functionalities, it

was necessary to develop mechanism for extending

generic engines. Kroki generic engines use aspect-

oriented programming techniques to capture run-time

points of interests and react in a desired way.

In the web engine, this process is pretty

straightforward. The web engine is developed using

Restlet engine, so all of the web classes extend Restlet

Resource class and are located in the resources

package. Every resource class has prepareContent

method that is invoked when a client request is sent to

a particular resource and can be used to attach aspect

functionalities. Restlet resources use map called

dataModel to pass arbitrary data to HTML templates,

so once attached to prepareContent, aspect can get

access to the resource object and its corresponding

dataModel (Figure 6). Also, all data contained in the

application cache is available to the aspect.

Figure 6. Aspects can change the content before pages are

rendered

Listing 1 shows an aspect that modifies the main

menu before it is presented to the user (one possible

scenario for this is filtering main menu items based on

user permissions created by Kroki administration

subsystem). Since generic web engine is designed as

one-page Ajax-based web application, once the user is

logged in, the interaction in it's entirety takes place on

the home page and Restlet resource in charge of this

page. So, as mentioned before, in order to modify the

main menu preparation process, we need to attach our

aspect to prepareContent method of HomeResource

class. Freemarker template looks up main menu list by

the name main_menu, so it will be the name by which

we will put our modified menu into dataModel.

Listing 1 represent basic steps described above.

Figure 5 Example of a) a mockup specification b) a corresponding UML-like specification c) a resulting web form in a view mode

6

VI. CONCLUSIONS

The paper presented architectural solutions

incorporated in the Kroki tool which enable prototype

execution. Core elements of this rapid prototyping

technique are the application repository and generic

engines which create functional enterprise Java

application based on the developed specification.

Listing 1. Aspect extension example

The process does not include traditional code

generation techniques where complete programming

code (or most of it) is being generated. In our

approach, engines are generic enough to cover basic

business operations on provided data.

The engines based on aspect-oriented programming

enable: (1) easier inclusion of future tools and features

that can affect the specified enterprise application

execution; (2) integration of generated and hand-

written code during application evolution, when its

code is exported to a general-purpose programming

tool; (3) dynamic adaptation of application’s look and

behavior in accordance with the user rights defined in

Kroki’s administration subsystem.

 Decision to use this approach is guided by years of

research in model-driven development and generic

enterprise systems [1, 13, 14, 15], which resulted in

development of our EUIS DSL [13] and Kroki tool.

Now, we are planning to convey a research as large

as possible including end-users, business specialists,

students, and IT experts in order to get their feedback

and measure their reactions while using the tool. We

plan to base our experiment on Methodology

Evaluation Model (MEM), which represents software

engineering specific extension of earlier Technology

Acceptance Model (TAM). The MEM model suggests

that a certain methodology, in order to be successfully

accepted and used, needs to satisfy both subjective and

objective measures of usefulness and ease of use. In

the experiment, we plan to measure performance

based variables (actual efficiency and actual

effectiveness) using cognitive load measurement

approach, and perception based variables (perceived

ease of use and perceived usefulness), like presented

in [16].

REFERENCES

[1] G. Milosavljevic, M. Filipovic, V. Marsenic, D. Pejakovic, I.

Dejanovic, Kroki: A mockup-based tool for participatory
development of business applications.. SoMeT (p./pp. 235-

242), : IEEE. ISBN: 978-1-4799-0419-8, 2013.

[2] T. Cerny, M. Macik, M.J. Donahoo, J. Janousek, Efficient
description and cache performance in Aspect-Oriented user

interface design, Computer Science and Information Systems

(FedCSIS), 2014
[3] T. Cerny, K. Cemus, M. J. Donahoo, and E. Song. Aspect-

driven, Data-reflective and context-aware user interfaces

design. Applied Computing Review, 13(4):53–65, 2013
[4] J. L. H. Agustin, P. C. del Barco, A model-driven approach to

develop high performance web applications, Journal of

Systems and SoftwareVolume 86, Issue 12, 2013
[5] J. M. Rivero, J. Grigera, G. Rossi, E. Robles Luna, F. Montero,

M. Gaedke. 2014. Mockup-Driven Development: Providing

agile support for Model-Driven Web Engineering. Inf. Softw.
Technol. 56, 6, June 2014

[6] J. Solano, Exploring How Model Oriented Programming can

be Extended to the UI Level, PhD Thesis, University of
Ottawa, 2010, http://hdl.handle.net/10393/28569

[7] A. Forward, O. Badreddin, T. Lethbridge, J. Solano, Model-

driven rapid prototyping with Umple, Software: Practice and
Experience, Volume 42, Issue 7, pages 781–797, July 2012

[8] H. Störrle, Model-driven development of user interface

prototypes: an integrated approach, Proceedings of the
Fourth European Conference on Software Architecture:

Companion Volume, pp 261-268, Copenhagen, Denmark

[9] T. Buchmann, Towards Tool Support For Agile Modeling:
Sketching Equals Modeling, Proceedings of the 2012 Extreme

Modeling Workshop, pp. 9-14. ACM, 2012.
[10] A. Coyette, S. Schimke, J. Vanderdonckt, C. Vielhauer,

Trainable Sketch Recognizer for Graphical User Interface

Design , Human-Computer Interaction–INTERACT 2007.
Springer Berlin Heidelberg, 2007. 124-135

[11] A. Coyette, J. Vanderdonckt, In Human-Computer

Interaction-INTERACT 2005, pp. 550-564. Springer Berlin
Heidelberg, 2005.

[12] B. Plimmer, M. Apperley, Interacting with Sketched Interface

Designs: An Evaluation Study, In CHI'04 extended abstracts
on Human factors in computing systems (pp. 1337-1340).

ACM.

[13] B. Perišić, G. Milosavljević, I. Dejanović, B. Milosavljević,

“UML Profile for Specifying User Interfaces of Business

Applications”, Computer Science and Information

Systems,Vol. 8, No. 2, pp. 405-426., 2011
[14] G. Milosavljević, B. Perišić, “A Method and a tool for rapid

prototyping of large-scale business information systems“,

Computer Science And Information Systems, Vol. 02, pp. 57-
82, 2004

[15] B Milosavljevic, M. Vidakovic, S.Komazec, G. Milosavljevic,

User interface code generation for EJB-based data models
using intermediate form representations,2nd International

Symposium on Principles and Practice of Programming in

Java, PPPJ 2003, Kilkenny City, Ireland, 2003
[16] S. Abrahão, E. Insfran, J. A. Carsí, M. Genero, “Evaluating

requirements modeling methods based on user perceptions: A
family of experiments”, Information Sciences, Volume 181,
Issue 16, pp. 3356-3378 (2011)

[17] Kroki, www.kroki-mde.net

[18] Kroki demo, http://youtu.be/r2eQrl11bzA

public aspect MainMenuAspect {
/* Create the pointcut that
 intercepts PrepareContent method in
 Home resource and obtain home resource object
*/
 public pointcut setMenu
 (HomeResource homeResource) :
 call(public void HomeResource.prepareContent())
 && this(homeResource);

 after (HomeResource homeResource) :
 setMenu(homeResource) {
 //Obtain main menu list from AppCache
 ArrayList<AdaptMenu> menus =
 AppCache.getInstance().getMenuList();

 //Do something...

 //Put modified main menu to data model
 homeResource.addToDataModel
 ("main_menu", menus);
}

http://hdl.handle.net/10393/28569
http://www.kroki-mde.net/
http://youtu.be/r2eQrl11bzA

